Assessment Of Antibacterial Activities Crude Leaf Extracts Of Selected Medicinal Plants From Ezza North Ebonyi State Nigeria Against Staphylococcus Aureus, Klebsiella Pneumoniae, Pseudomonas Aeruginosa. Escherichia Coli, And Streptococcus Mutans.

*ALI FREDRICK U¹, ORINYA O.F², OMINYI,M.C¹, EZENWALI M.O., ONWE L.C.¹, NWACHETA C.¹, ALIEGBERE A.¹, AKPAN M.S.¹, NWITE O.M.¹, ONUIGBO G.N¹, AND ONUIGBO C.A¹,

¹Biotechnology Department Ebonyi State University Abakaliki, Nigeria
²Medical Biochemistry Department Ebonyi State University Abakaliki, Nigeria
³Biochemistry Department Enugu State University of Science and Technology, Nigeria

Corresponding Author: ALI FREDRICK U

Abstract

Aim: Medicinal plants have been used for ages as remedies for human diseases because they contain bioactive components of therapeutic value. This work was undertaken to investigate the in vitro antibacterial efficacy of six herbal extracts namely: Alstonia boonei, Morinda lucida, Parkia biglobosa, Olax subscopedia, Anthocleista djolensis and Cussonia spicata against six medicinally important bacterial strains (Klebsiella spp., Staphylococcus, Streptococcus mutans, Pseudomonas aeruginosa, Salmonella spp., and E. coli).

Method: Agar well diffusion method, with varying concentrations of each extract (100, 50, 25, and 12.5 mg/ml) were used.

Results: Alstonia boonei showed no inhibition, Morinda lucida showed maximum zone of inhibition against Klebsiella at 100 mg/ml and 50 mg/ml only. Parkia biglobosa exhibited inhibition from 25 mg/ml and maximum inhibition was recorded at 100 mg/ml against E. coli. 50 mg/ml against Staphylococcus whereas Cussoniapiaspiata showed maximum inhibition against E. coli and Pseudomonas at 100 mg/ml only and no inhibition was observed against other isolates. Based on the present evaluation, this work suggests that Morinda lucida, Parkia biglobosa, Anthocleista djolensis, and Cussonia spicata has inhibitory effects against some of the tested organisms and can be used in management of diseases caused by them while Alstonia boonei, and Olax may not be used.

Conclusion: However, it may be inferred that these plants can be used as therapeutic natural agents that may serve as lead for development of new pharmaceuticals addressing the major therapeutic needs.

Keywords: Pharmaceuticals, medicinal, therapeutic, plants, microorganisms, anti-biotics, agar well diffusion

I. INTRODUCTION

Plants are used by the indigenous people in different parts of Nigeria for treatment of infectious diseases such as cholera, diarrhoea, dysentery and other gastrointestinal disorders [1]. The use of plant extracts and phytochemicals, both with known antimicrobial properties, can be of great significance in therapeutic treatments [2]. In the last few years, a number of studies have been conducted in different countries to prove such efficacy. Many plants have been used because of their antimicrobial traits, which are due to compounds synthesized in the secondary metabolism of plants [3]. Among the families of onphthalmological preparation for the treatment of human illnesses such as malaria, gastro-intestinal disorders, fever, dizziness, secondary sterility, diarrhoea, jaundice, nose bleeding and pain [4].

Alstonia boonei is a very large, deciduous, tropical-forest tree belonging to the dogbane family, Apocynaceae. It is native to tropical West Africa, with a range extending into Ethiopia and Tanzania[5]. Its common name in the English timber trade is cheese wood, pattern wood or stool wood while its common name in the timber trade is "emien" [6].

Morinda lucida is a very good plant in traditional medicine in west Africa and various studies have confirmed it therapeutic effectiveness of several uses[7]. In addition to anthraquinones, tannins, and flavonoids have been isolated from it[7]. Extracts of the plant have shown anti-inflammatory, febrifugal and pain-reducing activity, as well as promoting gastric emptying and intestinal motility[8]. Leaf extracts have shown in vitro antimalarial activity against Plasmodiumfalciparum, while in several other tests antidiabetic properties have
been reported[9]. *Olax subscorepioidea* is a shrub or tree that belongs to the family of Olacaceae widely used as a medicinal plant in West African countries [10]. It is a highly valued medicinal plant in the traditional management of cancer, sexually transmitted diseases, pain-killers, asthma, mental illnesses [11]. The antimicrobial activities of ethanol extract of the roots of *O. subscorepioidea* has been reported on some selected microorganisms[12].

Anthoceista djalonensis is a tree growing up to 15 metres tall. The cylindrical bole is unbuttressed, it can be up to 40cm in diameter. The twigs sometimes have 2 erect spines or small cushions above the leaf axils[13]. This tree is one of several species in the genus that are much used in traditional medicine and for similar medicinal purposes [14]. They may all be used as substitutes for each other. The tree is commonly harvested from the wild[15]. *Anthoceista djalonensis* is widely used throughout its distribution area as a strong purgative and diuretic [16]. The root is commonly taken to treat intestinal problems, including constipation, to regulate menstruation and as an abortifacient[17].

Cussonia spicata are traditionally used for treatment of indigestion [18]. The mashed roots, which are succulent and edible, have been used for the treatment of Malaria and as a food source in times of need [19]. A root decoction is used to treat fever, venereal disease, as a diuretic and laxative and to treat mental illness [20].

II. MATERIALS AND METHODS

Materials:

- **Media** - Media used include: Nutrient agar (Fluka, Chemie India), Mueller Hinton agar and Nutrient agar (Oxoid, Uk), MacConkey agar (Fluka, Chemie, India), Simmons Citrate agar (BIOTECH Laboratories Ltd, Uk).
- **Broth media** used include peptone water, nutrient broth and Mueller – Hinton broth, Tryptone soya broth (Oxoid, Uk). all culture media broth media were prepared in line with the manufacturers’ instructions.

Equipment

- Equipment used includes hot air oven (Genlab, UK, model No: MIN0/50), refrigerator (Samsung, China, model No: GC-051SA), incubator (Merck, Germany, MINI/50), Bunsen burner (SEDI, Akuke, Nigeria), microscope (Olympus, Germany), autoclave (Medica Instrument MFG. Co).

Instruments

- Instrument used include: wire gauze, tripod stand, inoculating loop, test tube rack, spatula, laboratory forceps, meter rule, electronic weighing balance (Scout Pro, China, model No: SPU401), conical flask, beaker, Petri dish, stirring rods, filter papers, glass slides, aluminum foil, injection syringes, micropipette tips, INTEC micropipette (10-100µl), cork borer (6mm), sucker, mortar and pestle, Whatmann Number (1) filter paper.

Chemicals Used

- Chemicals used include: methanol, distilled water, normal saline, immersion oil, Lugol’s iodine, ethanol, safranin, crystal violet, Hydrogen peroxide, peptone pellets, tetramethyl-p-phenylenediamine, sodium chloride, dimethylosulphoxide (DMSO), kovac’s reagent (Fisher Scientific Company, USA).

Plants Materials

- The plant materials used in the present study are *Alstonia boonie*, *Morinda lucida*, *Parkia biglobosa*, *Olax subscorepioidea*, *Anthoceista djalonensis* and *Cussonia spicata*. The leaves of selected plants were collected from Ezza North in Ebonyi State Nigeria. It was identified by a taxonomist Professor Okafor J. of the department of Biology Ebonyi State University Abakaliki Nigeria where specimen has been deposited at the herbarium for future reference. The sample were cleaned, air dried for two weeks, and ground to powder using mechanical grinder (corona machine model E 46) and sieved with 2mm size sieve.

Methods

- **Extraction of the plant material**

 The powdered plant (150 g) was macerated with 750 ml 70 % methanol for four days after which, it was filtered and evaporated to dryness on water bath to a reddish-brown residue, the residue was stored in an air tight container until required for further use.

- **Test Organisms**

 Five antibiotic - resistant bacteria organisms used are *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, Escherichia coli, and *Streptococcus mutans*. These test organisms were collected from microbiology laboratory unit of Federal Teaching Hospital Abakaliki (FETHA) Nigeria.

- **Purification and Re-Identification of Bacterial Isolates**

 All the bacterial isolates (*E. coli*, *Klebsiella pneumoniae*, *Staphylococcus aureus*, *Streptococcus mutans*, *Salmonella spp* and *Pseudomonas aeruginosa*) were purified on nutrient agar and MacConkey’s agar plates. Gram staining and conventional biochemical test such as Indole test, Oxidase test, Coagulase test, Catalase test, Voges Proskauer (VP) test and sugar fermentation test. Identified and purified test organisms were stored in the refrigerator in a nutrient agar slant [20].
Preparation of 0.5 McFarland Turbidity Standard

Turbidity standard equivalent of 0.5 McFarland Standard was prepared by adding 1 ml of concentrated H₂SO₄ to 99 ml of distilled water, and dissolving 0.5 g of dehydrated barium chloride (BaCl₂•2H₂O) in 50 ml of distilled water in separate reaction flasks respectively. Barium chloride solution (0.6 ml) was added to 99.4 ml of the H₂SO₄ solution in a separate test tube, and was mixed well to obtain 0.5 McFarland turbidity standard. Small portion of the turbid solution was transferred to a capped test tube stored at room temperature (28°C). This was used to adjust and to compare the turbidity of the test bacteria in order to get a confluent growth on a growth or culture plate [21] when performing Antimicrobial Susceptibility Testing (AST).

Preparation of Nutrient Broth

Nutrient broth was prepared by dissolving 1.3 g of nutrient broth powder (Oxoid, UK) in 100 ml of distilled water according to the manufacturer’s instructions. Then, 5 ml each of the nutrient broth was dispensed aseptically into capped test tubes which were sterilized by autoclaving at 121°C for 15mins at 15psi. [22].

Preparation of Nutrient Agar, Mueller-Hinton And Macconkey Agar Plates

Agar plates were prepared by dissolving 2.8g, 3.8g and 5.2g respectively of nutrient agar, Mueller-Hinton and MacConkey agar in 100 ml of distilled water each according to the manufacturer’s instructions. This was heated over a Bunsen burner flame to dissolve and twenty milliliters each was dispensed aseptically into McCartney bottles and was sterilized by autoclaving at 121°C for 15mins at 15psi.

Standardization of Test Bacteria

All test bacteria were standardized individually before use by inoculating a 5 ml normal saline in sterile test tubes with loopful of a 24hr young culture of the test organism from a nutrient agar slant. Afterwards, dilutions using loopful of the test bacterium and sterile water were carried out in order to get microbial population of 10² colony forming unit per milliliter (CFU/ml) by comparing it with 0.5 McFarland turbidity standards [23].

Screening for Antimicrobial Activity herbal Extracts Using Agar Well Diffusion Method

Twenty milliliter each of sterilized molten Müller Hinton agar was poured aseptically into sterile Petri dishes of equal sizes (20ml) and then allowed to solidify (gel). The surface of the Mueller Hinton agar plates were then streaked with standardized inoculums of the test bacteria that was adjusted to 0.5 McFarland turbidity standards. Thereafter, a sterilized 6 mm cork borer was used to bore 5 holes on the Mueller Hinton agar plate(s), and 4 of the holes were filled with equal volumes of the respective plant extracts that was diluted with 90 % DMSO [24]. Sterilized distilled water was used as the negative control. The plates were allowed for about 30mins for pre-diffusion of the plant extracts, and these were incubated at 37°C for 24hrs. After incubation, the inhibition zone diameters were measured in millimeter using a meter. The inhibition zone diameter (IZD) of each plant extracts were evaluated by subtracting the size of the cork borer from the IZD measured[25].

Determination of Minimum Inhibitory Concentrations (Mic) of the Plant Extracts Against Test Organisms Using Agar Well Diffusion Method

Varying concentration of each extract (100 mg/ml, 50 mg/ml, 25mg/ml, 12.5mg/ml), were prepared. The surface of the Mueller Hinton agar plates were then streaked with standardized inoculums of the test bacteria that was adjusted to 0.5 McFarland turbidity standards. Thereafter, a sterilized 6 mm cork borer was used to bore 5 holes on the Mueller Hinton agar plate(s), and 4 of the holes were filled with equal volumes of the respective plant extracts and a positive control (Ciprofloxacin 5µg) was placed on the surface of the Mueller Hinton Agar and a hole was bored and was filled with sterile water as a negative control. The inoculated plates were incubated for 18 – 24 hr using incubator. After 18 – 24 hr incubation, the plates with clear inhibition around a bored hole with the lowest concentration was considered to be the minimum inhibitory concentration [26].

III. RESULTS

Table 1: Antimicrobial activity of methanol extract of leaves of Morinda lucida

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>100mg/ml</th>
<th>50 mg/ml</th>
<th>25 mg/ml</th>
<th>12.5 mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>11 mm</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>23mm</td>
<td>16 mm</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Salmonella</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
</tbody>
</table>

Table 2: Antimicrobial activity of methanol extract of leaves of Parkia biglobosa

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>100mg/ml</th>
<th>50 mg/ml</th>
<th>25 mg/ml</th>
<th>12.5 mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>16mm</td>
<td>13 mm</td>
<td>14 mm</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>13 mm</td>
<td>10 mm</td>
<td>13 mm</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>19 mm</td>
<td>14 mm</td>
<td>13 mm</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>18 mm</td>
<td>14 mm</td>
<td>12 mm</td>
<td>14 mm</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>15 mm</td>
<td>15 mm</td>
<td>13 mm</td>
<td>No inhibition</td>
</tr>
</tbody>
</table>
Assessment Of Antibacterial Activities Crude Leaf Extracts Of Selected Medicinal Plants From Ezza

Table 3: Antimicrobial activity of methanol extract of leaves of Anthocleista adjonlensis

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>100Mg/ml</th>
<th>50 mg/ml</th>
<th>25 mg/ml</th>
<th>12.5 mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>14 mm</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa.</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>No inhibition</td>
<td>15 mm</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
</tbody>
</table>

Table 4: Antimicrobial activity of methanol extract of leaves of Cussonia spicata

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>100Mg/ml</th>
<th>50 mg/ml</th>
<th>25 mg/ml</th>
<th>12.5 mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>12 mm</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa.</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
</tbody>
</table>

Table 5: Antimicrobial activity of methanol extract of leaves of Alstonia boonie

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>100mg/ml</th>
<th>50 mg/ml</th>
<th>25 mg/ml</th>
<th>12.5 mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa.</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
</tbody>
</table>

Table 6: Antimicrobial activity of methanol extract of leaves of Olax subscopedia

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>100 Mg/ml</th>
<th>50 mg/ml</th>
<th>25 mg/ml</th>
<th>12.5 mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa.</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
</tbody>
</table>

IV. DISCUSSION

The antimicrobial activity of plants can be detected observing the growth response of various microorganisms to the plant tissues and extracts that are placed in contact with them [27]. The choice of organisms to be used would depend on the purpose of the investigation. Morinda lucida extract was active against Pseudomonas aeruginosa as revealed by the zones of inhibition 11 mm, 23 mm and 16 mm against Klebsiella mutans, respectively [Table 1]. This can be explained by the differences in the cell wall permeability of the organisms to antimicrobial agents. This is in line with the work of [28], which reported that the extract of piper guineense had significantly inhibited the growth of bacteria Salmonella typhi, Staphylococcus aureus. Report have shown that a similar plant species Gongronemalatifolium containing saponins, flavonoids, tannins and anthraquinones was found to have very potent antibacterial activities of different plant species [29]. Flavonoids have been reported to be synthesized by plants in response to microbial infections and are good antibacterial agents, tannins have been demonstrated to have antibacterial activities. However, E. coli, Pseudomonas Staphylococcus, Klebsiella and Salmonella showed susceptibility to the extract of Parabioglobo [Table 2]. Maximum inhibition (19 mm) against Staphylococcus while low inhibition 12 mm against Klebsiella at 25 mg/ml were recorded. The cell wall of gram negative organisms makes them less permeable to antimicrobials, because of its high lipid content and that the extract was inactive on the other bacterial species probably because of innate resistance [30].

Furthermore, Anthocleista adjonlensis showed positive activity (14 mm) against E. coli at 100 mg/ml, Staphylococcus 15 mm at 50 mg/ml [Table 3], while Cussoniaspicata 12 mm against E. coli at 100 mg/ml, 12 mm against Pseudomonas aeruginosa [Table 4]. This is in line with the work of [31], that showed antibacterial efficacies of herbal extracts concentrations under study. Olax subscopedia and Alstonia boonie were inactive against the organisms under study at all concentrations and showed negative effects on antibacterial activity in all the microorganisms tested [Table 5 and 6]. This investigation indicated that Olax subscopedia and Alstonia boonie extracts did not show antibacterial activity which similar to the recent study of [32], which suggested that the methanolic Bleaching extract has not shown antifungal activity. However, negative results do not mean absence of bioactive constituents nor is the plant inactive. Crude plant extracts are generally a mixture of active and non active compounds. Same observations have been reported earlier by various authors [33]. Active compounds present in insufficient quantities in the crude extracts to show activity.
with the dose levels employed. Lack of activities can thus be proven by using large doses [34]. With no antibacterial activities extract may be active against other bacteria species which are not tested. Our previous study had shown that *Anthocleista adjalonensis* extract contain medically useful phytochemicals such as saponins and steroids [34]. These substances could be extracted for food industries or health products as medicinal food, pharmaceutical exploits, biotechnology and general medicine.

ACKNOWLEDGEMENT

The authors are grateful to N/Dr. Oke-Owelle Sunday of umuezeoka in Ezza North local government Ebonyi State for sourcing the plant material and Mr. Owelle of microbiology Department for his assistant in the laboratory work.

REFERENCES

[20]. Izzo, A.A., Di Carlo, G., Biscardi, D., Fusco, R., Mascolo, N., Borrelli, F.,

Assessment Of Antibacterial Activities Crude Leaf Extracts Of Selected Medicinal Plants From Ezza

NOTE: PLEASE PUBLISH IN RANKED JOURNAL OF PHARMACY AND PHARMACOGNOSY