Current Status of Nanotechnology Methods Applied For Dental Implants

¹Suryakant C. Deogade, MDS (Professor), ²Gunjan Dube, MDS (Reader), ³Sumathi K, MDS (Sr. Lecturer), ⁴Prashant Dube, MDS (Sr. Lecturer), ⁵Utkarsh Katare, MDS (Reader), ⁶Divya Katare, MDS (Sr. Lecturer) ⁷Shreyansh Damade, MDS (Sr. Lecturer)

ABSTRACT: The structural and functional contact of implant surface with the surrounding bone is an important and crucial aspect to determine the long-term success of the device. Current trends have achieved a drastic enhancement in osseointegration at the bone-implant interface after modifying the surface topography of implant surface particularly at the nanoscale level. This review discusses an overview of the most common manufacture techniques and the related cells-surface interactions. It also describes the available data on nanoscale modifications mentioning their risks and benefits. Nanotechnology has opened new opportunities for tissue engineers and biologists to interact and understand relevant biological processes and cell specific functions. Nanoscale modification of titanium endosseous implant surfaces can alter cell behavior and their responses that may significantly benefit dental implant therapy.

KEYWORDS: Nanotopography; Dental implant; Stem cells; Surface treatment; Osseointegration; Differentiation.

I. INTRODUCTION

Dental implants are commonly practiced as an adjunctive therapy for restoring missing teeth. One of the major challenges in implantology is to achieve and maintain the osseointegration, as well as the epithelial attachment of the gingiva with implants. The idea of osseointegration was first emerged in the late 1970 and 1980. Osseointegration actually refers to a structural and functional fusion of the implant surface with the surrounding bone. An intimate contact of the gingival tissue with the neck of implant may prevent bacteria colonization leading to peri-implantitis while direct bone bonding may ensure a bio-mechanical anchoring of the implant. Primary stability is the first step of the osseointegration and is related to the mechanical anchorage, design of implants, and bone structure. At a microscopic level, the screw design, the thread shape, and the pitch distance are fundamental to offer stability to dental implants. Abuhussen et al postulated that dental implants should be designed to maximize favorable stresses and to minimize unfavorable stresses along the bone-implant interface. The use of a smaller pitch, deeper threads and longer and larger implants may be of help in increasing the surface area of contact with the surrounding bone. For the stress of the surface area of contact with the surrounding bone.

Several studies have been attempted to assess the modification in the bone-implant interactions brought by various surface modifications. Variola et al⁸ stressed microscale features, which they believed to create a micro-environment that can modulate recruitment and function of cells. Some researchers⁹⁻¹¹ proved that the roughness of the surface can influence osseointegration by means of cell attraction, improving cell adhesion. However, other researchers¹²⁻¹⁴ showed the role of the microscopic features of the implant surface on bone formation at the implant site and believed to be indirectly involved in the osseointegration process. The control

¹Department of Prosthodontics and Crown & Bridge, Hitkarini Dental College & Hospital, Jabalpur, Madhya Pradesh, India

²Department of Oral and Maxillofacial Surgery, Hitkarini Dental College & Hospital, Jabalpur, Madhya Pradesh, India

³Department of Prosthodontics and Crown & Bridge, Hitkarini Dental College & Hospital, Jabalpur, Madhya Pradesh, India

⁴Department of Prosthodontics and Crown & Bridge, Hitkarini Dental College & Hospital, Jabalpur, Madhya Pradesh, India

⁵Department of Prosthodontics and Crown & bridge, People's College of Dental Science and Research Centre, Bhopal, Madhya Pradesh, India

⁶Department of Endodontics and Operative dentistry, Bhabha College of Dental Sciences, Bhopal, Madhya Pradesh, India

⁷Department of Prosthodontics and Crown & bridge, People's College of Dental Science and Research Centre, Bhopal, Madhya Pradesh, India

of surface modifications at the protein and cell levels i.e. in the nanometer range, poses a challenge for researchers and dental implants manufacturers.

Nanotechnology has been defined as "the creation of functional materials, devices and systems through control of matter on the nanometer length scale (1-100 nm), and exploitation of novel phenomena and properties (physical, chemical, and biological) at that length scale" (National Aeronautics and space Administration). The term 'nanotechnology' was first defined by Norio Taniguchi of the Tokyo Science University in a 1974 paper as follows: 'Nanotechnology' mainly consists of the processing of, separation, consolidation and deformation of materials by one atom or one molecule. Nanotechnology involves nano-sized materials which have a size range between 1 and 100 nm (10⁻⁹m). Materials are also classified based on their form and structure as nanostructures, nanocrystals, nanocoatings, nanoparticles, and nanofibers.

Nanotechnologies can create surfaces with controlled topography, and chemistry which would help understanding biological interactions and developing novel implant surfaces with predictable tissue-integrative properties. The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features, which is mainly mediated by integrins, binding to the arginine-glycine-aspartate sequences of peptides. Cell adhesion to the extra-cellular matrix (ECM) leads to clustering of integrins into focal adhesion complexes (FA), and activates intracellular signaling cascades. Nanofeatures are crucial to modulate stem cells behavior. Osteoblasts are able to "encode" the 3-dimensional characteristics of the surface like lines, pores or dots and modulate their growth according to the suggested structural features. Hence, the surface pattern in particular has been demonstrated to play a key role.

Several new coating technologies have also been developed for applying hydroxyapatite and related calcium phosphates (CaP), onto the surface of implants. It has been demonstrated that CaP coatings provided titanium implants with an osteoconductive surface. After implantation; CaP coatings undergo dissolution in the peri-implant region which increases ionic strength and saturation of blood. This process leads to the precipitation of biological apatite nanocrystals onto the implant surface, which in turn incorporates proteins and promotes the adhesion of osteoprogenitor cells that would produce the extra-cellular matrix of bone tissue. It has been also shown that osteoclast cells are able to degrade the CaP coatings through enzymes and created pits on the coated surface. The presence of CaP coatings on titanium promotes an early osseointegration of implants with a direct bone bonding as compared to non-coated surfaces. The challenge is to create CaP coatings that would dissolve at a similar rate than bone deposition to achieve a direct bone contact on implant surfaces.

This paper reviews the most common manufacture techniques and the different steps of the interactions between biological fluids, cells, tissues, and surfaces of implants. Recent nanoscale surface modifications and CaP coating technologies of dental implants are also discussed.

II. NANOFEATURED SURFACE MODIFICATIONS

Surface modifications has been shown to enhance the bone-to-implant contact and improve their clinical performance. 9,22 Numerous techniques are used to create nanofeatures on endosseous implants surfaces, which are as follows,

- 1. Self-assembly of monolayers (SAMs)
- 2. Chemical Modifications
- A. Anodic Oxidation
- B. Acid oxidation or Peroxidation
- C. Alkali treatment (NaOH)
- 3. Physical Modifications
- D. Compaction of nanoparticles
- E. Ion beam deposition
- F. Plasma Spray
- G. Grit Blasting
- 4. Nanoparticle deposition
- H. Sol-gel (colloidal particle adsorption)
- I. Discrete crystalline deposition (DCD)
- J. Lithography and contact printing technique
- 5. Combination of chemical and physical modifications

1. MOLECULAR SELF-ASSEMBLY or SELF-ASSEMBLED MONOLAYERS (SAMs):

Self-assembled monolayers (SAMs) are created by the spontaneous chemisorption and vertical close-packed positioning of molecules onto some specific substrata, where the end-chain group(s) at the interface is exposed.²³ Germanier et al²⁴ in their histomorphometric study in miniature pigs have demonstrated the role of such functional end-group with an example of using cell adhesive peptide domains appended to SAMs composed of polyethylene glycol (PEG) and applied to the Ti implant surfaces.

2. ANODIC OXIDATION:

Anodic oxidation or anodization is one of the most commonly used methods to obtain nanostructured oxides on Ti-based implants. ²⁵⁻²⁹Even a nanoscale oxide with diameters of less than 100 nm can be created. The titanium metal acts as the anode, and an inert platinum sheet serves as the cathode. Both these are connected by copper wires and linked to a positive and negative port of a 30 V/3 A power supply, respectively. During anodization, both anode and cathode are submerged into diluted hydrogen fluoride (either at 0.5 wt % or 1.5 wt %) in a Teflon beaker. During the process, a strong acid dissolves the oxide layer creating a pattern that follows the consecutive lines of the galvanic current. By the voltage regulation and density, it is possible to control the diameters of nanostructures and the gap between them. This is a relatively simple and economical method of surface modification. Anodic oxidation can create surfaces which have been considered as platforms for drug delivery.

By regulating the voltage time, nanofeature properties could be controlled. It has been reported that the diameters of the nanotubes could be modulated to a range from 20 to 150 nm by modifying voltage conditions. It has been found that TiO₂ nanotube arrays were more uniform on electro-polished titanium than on machined one. Alkaline phosphatase (ALP) is a marker of osteogenic differentiation. TiO₂ nanotubes with a diameter of 100 nm improved the production of ALP activity by osteoblastic cells as compared to 30-70 nm diameter nanotube surfaces. This increased ALP activity demonstrate enhanced bone tissue integrative properties. Von Wilmowsky et al³³ concluded that implant surface with interface features of 30 nm TiO₂ nanotubes positively influence bone-implant contact and peri-implant bone formation.

3. ACID OXIDATION OR PEROXIDATION:

The combination of strong acids can be effectively used to create nanopits of 20-100 nm diameters on titanium surface. ³⁴The titanium surface is etched with a solution of strong acids, e.g., H_2SO_4/H_2O_2 or HCL/H_2O_2 or HF/H_2O_2 , at a constant temperature and for a specific duration and then stopped by adding distilled water. The surface is washed further with ethanol in an ultrasonic bath for 20 minutes and dried. ³⁵The treatment with H_2O_2/HCL has been shown to create novel nanostructures of amorphous titanium oxide on the implant surface. ³⁶It was shown that HCL/H_2O_2 treatment increased the adsorption of RGD peptides onto the implant surface. ³⁷Treatment with HF/H_2O_2 also creates nanostructures on TiO_2 grit blasted surfaces. ³⁸Several studies and investigations support the observation that HF acid treatment with TiO_2 grit blasted Ti implants has shown rapid bone accrual at the implant surface. ³⁹⁻⁴⁴

Isa and colleagues³⁹have documented that fluoride-modified Ti-surface appeared to optimize the upregulation of cbfa-1, a transcription factor that is essential for the maturation and differentiation of mesenchymal stem cells into osteoblasts. Guo and colleagues⁴¹ compared TiO-blasted surfaces vs TiO-blasted followed by HF acid treatment and reported that only HF acid treated surface had nano-scaled features and support the osteogenic adherent cell response compared to TiO-blast adherent cells. Berglundh and co-workers⁴³ found that fluoride-modified implant surface enhances and promotes osseointegration in the early phase of healing following implant installation in six mongrel dogs. The parameters like temperature, duration, and solutes can be adjusted to modify the number and depth of nanostructures, which further modulate cell function. The processing of titanium screw-shaped implants with H₂SO₄-H₂O₂ creates a nanopattern which has been demonstrated *in vivo* to be linked with an enhanced osteogenesis.³⁴It has been also observed that oxidative nanopatterning promoted the growth of the stem cells.⁴⁵

4. ALKALI TREATMENT:

NaOH treatment is popular among current dental implant researchers, which chemically reacts with the implant surfaces exposing reactive groups and creates nanoscale topography. Zhou et al⁴⁶ have demonstrated that NaOH application catalyzes the production of Ti nanostructures outward from the Ti surface. NaOH solution treatment forms a sodium titanate gel layer on the Ti surface, which allows hydroxy-apatite deposition. Similar reaction has also been noted with other metals such as zirconium and aluminium. ⁴⁷⁻⁴⁹Oh et al⁵⁰ have reported an accelerated nano-scale HA-crystal growth on TiO₂-nanotubes chemically treated with NaOH when tested in a simulated body fluid (SBF).

5. COMPACTION OF NANOPARTICLES:

This is one of the approaches of physical methods which involve compaction of nanoparticles of TiO₂ vs micron-level particles to yield surfaces with nanoscale grain boundaries.⁵¹ The main advantage of compaction of nanoparticles is that it conserves the chemistry of the surface among different topographies.

6. ION BEAM DEPOSITION:

Coelho and Suzuki⁵² reported an ion beam deposition (e.g. hydroxyapatite) as an alternative method of depositing nanoscale material on to the implant surface. They have shown an ibad thin-film process as an alternative method for surface incorporation of bioceramics on dental endosseous implants, while doing an experimental study in dogs.

7. PLASMA SPRAY:

The plasma spray can create engineered-surface nanostructures of less than 100 nm diameters. Initially, a vacuum is used to remove all contaminants, and then kinetic energy guides the charged metallic ions or plasma to the implant surface. Various materials (Ag, Au, Ti, etc.) can be coated onto a wide range of underlying structures (metals, polymers, and ceramics). SaReising et al also found a greater calcium deposition on the nano Ti-coated surfaces when compared to uncoated surfaces. The most popular coating method is plasma spraying of HA satisfied surfaces when compared to uncoated surfaces. The most popular coating method is plasma spraying of HA satisfied surfaces when compared to uncoated surfaces. The most popular coating method is plasma spraying of HA satisfied surfaces and composition. The elevated temperature required in this processing causes partial thermal decomposition of HA, which further forms highly soluble amorphous CaP (22-62%) satisfied or α -TCP, β -TCP, tetra-CaP, and calcium oxide satisfied to the formation of unacceptable and heterogeneous coatings. Such coatings may create problems like unreliable adhesion, satisfied the coating satisfied of the coating satisfied interface satisfied or the significant degradation in the fatigue resistance and endurance strength of the implant alloy satisfied interface satisfied the significant degradation in the fatigue resistance and endurance strength of the implant alloy satisfied interface satisfied the significant degradation in the fatigue resistance and endurance strength of the implant alloy satisfied in the satisfied satisfied satisfied in the satisfied satis

8. GRIT BLASTING:

This technique creates a porous layer on the implant surface which is achieved through the collision with microscopic particles. The thickness of the porous layer can be modified by the regulation of granular size of the particles. The rough surface, thus created has been demonstrated to stimulate osteoblastic gene expression, and to enhance bone-implant fixation. ^{39, 83}

Variola et al³⁴ demonstrated the creation of 50-200 nm porous layer on titanium implant surface by using the combination of blasting and hydrogen fluoride treatment. They found that the majority of implants yielded good osseointegration and stability at one year after surgery. Alumina is one of the most commonly used materials for particle blasting. Aparicio et al⁸⁴ showed that alumina particle detachment during the healing process and then absorption by the surrounding tissue could compromise osseointegration. Other researchers also have shown that grit blasting residue may interfere with the osseointegration of the titanium dental implants.⁸⁵⁻⁸⁷

Grit blasting with Biphasic Calcium Phosphate (BCP) ceramic particles has shown a high degree of surface roughness and particle free surfaces after acid etching of titanium implants. It has been shown that BCP grit-blasted surfaces stimulated an early osteoblast differentiation and bone apposition as compared to mirror-polished or alumina grit-blasted titanium. ^{88, 89} TiO₂-grit blasting materials has shown interesting results in an experimental research. ⁹⁰ Ivanoff et al ⁹⁰has shown a significant enhancement of bone-to-implant contact with TiO₂-blasted implants than with machined surfaces. This result was confirmed by Rasmusson et al ⁹¹after performing an experimental study in the dog mandible.

8. SOL-GEL TRANSFORMATION:

Ben-Nissan and Choi⁹² have discussed sol-gel transformation of bioactive nanocoatings for medical applications. These approaches achieve deposition of nanometer-scale calcium phosphate accretions to the implant surface. 93-97 The resultant atomic-scale interactions thus developed exhibits a strong physical bonding. 92-98-100 Sol-gel technique may offer a more accurate compositional control and the possibility of fabricating much thinner coatings which establishes biological stability. The processing technique and the nature of the coating might be altered to modulate the coating-substrate strength.

9. DISCRETE CRYSTALLINE DEPOSITION (DCD):

This modified approach was reported by Nishimura et al¹⁰¹ who demonstrated a directed approach to assembly of CaPO₄ nanofeatures on dual acid-etched cpTi implant surfaces. The deposition of discrete nanoparticles (20-40 nm) on an acid-etched Ti surface have shown an increased mechanical interlocking with the surrounding bone and the early healing of bone at the implant surface in a rat model. The major risk for DSD is detachment of coating and toxicity of related debris. In this regard, Gutwein and Webster¹⁰² evaluated the relationship of particle size, cell viability, and proliferation in the presence of nanophase particles compared to conventional alumina and titania micron-particles. They found that nanoparticles of alumina and titania possessed less negative impact in cell viability and proliferation. Mendes et al¹⁰³ have shown the effect of DCD of CaPO₄

nanocrystals on bone-bonding to Ti surfaces. They suggested that the quantum interaction of high electron density at the atomic level can enforce high bond strength between the substrate and nanoscale coating.

10. LITHOGRAPHY AND CONTACT PRINTING TECHNIQUE:

An optical method typically lithography is used to create nanoscale topography on titanium surface. This approach is reliant on wavelength specific dimensions to achieve the appropriate nanoscale modification. ⁴⁶These labor intensive methods require considerable development before its clinical application.

PROTEIN-SURFACE INTERACTIONS:

Balsundaram and colleagues¹⁰⁴ have shown that alteration in initial protein-surface interaction is a critical and responsible aspect controlling osteoblastic adhesion. Protein-surface interaction is the initial step of the osseointegration process. After implantation, protein adsorption occurs on the implant surfaces, which further mediate subsequent cell adhesion and proliferation. Fath and colleagues¹⁰⁵ have highlighted that cell adhesion to ECM proteins is mediated via integrin receptors, which transmit signals through focal contacts.

Tosatti et al¹⁰⁶ have shown that RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblastic differentiation by poly (L-lysine)-graft-poly (ethylene glycol)-coated Ti-surfaces. They found that integrins bind the RGD motif in cell adhesion proteins. Sinha and Tuan¹⁰⁷ demonstrated the role of fibronectin or vitronectin in mediating cell adhesion of osteoblasts and other cells to synthetic orthopedic implant material surfaces. Nanoscale topographic modification can regulate cell spreading and focal adhesion (FA) dynamics.¹⁰⁸

Altering the surface energy of a biomaterial substrate is a classical approach to change cell-surface interactions. A change in surface energy dramatically affects the ECM protein adsorption onto surfaces. Several studies of SAMs have shown that hydrophobic groups are more likely to adsorb albumin which is not replaced by ECM proteins. This subsequently blocks the cell adhesion. Hydrophobic surfaces permitted an interchange of adsorbed albumin by ECM proteins. ¹⁰⁹ Modification with nanoscale topography drastically alters the protein-surface interactions. An increased adsorption of vitronectin on nanostructured surfaces has been observed when compared to conventional topography. ^{110, 111} Webster and colleagues ¹¹¹ found an increased osteoblast adhesion on nanophase ceramics, when compared to other cell types, such as fibroblasts.

Scotchford and co-workers²³ have found higher adsorption of fibronectin on hydrophilic gold SAMs surfaces with greater FA formation; evident in the human osteoblast-like cells adhered to hydrophobic SAM treated surfaces. Lim and colleagues¹¹² have demonstrated that the protein adsorption, cell adhesion and attachment are directly related to an increased FA kinase activity. Cavalcanti-Adam and colleagues¹⁰⁸ have shown that the cell spreading and FA dynamics are regulated by spacing of integrin ligands. They found that the cells cultured on a 58 nm nanopattern formed normal FA, whereas those plated on a 108 nm nanopattern failed to develop FA. Park and Webster¹¹³ also mentioned the creation of nanoscale surface roughness as the determining factor for protein-surface interactions.

CELL BEHAVIOUR DYNAMICS:

Nanostructured topography affects cell behavior such as cell adhesion, spreading and motility. Brunette¹¹⁴ has shown that substratum nanosurface topography influences cell behavior dynamics including its adhesion, spreading and motility by both direct and indirect interactions. Andersson and colleagues¹¹⁵ have demonstrated the influence of Ti-nanoscale features on the epithelial cell morphology and cytokine production. They compared cell behaviours on Ti-substrates with 15 mm wide and 185 nm deep grooves vs Ti-substrates with 100 nm high, 168 nm diameter hemispherical nanopillars. The cells appeared partially aligned to the grooves and showed a cytokine release similar to that shown by cells on flat surface topography. Cells on hemispherical nanopillars had a smaller area and more membrane projections. Morphological variation correlated with decreased protein secretion. It has been suggested that 70-100 nm features of an implant surface are scaled to function directly with the FA of cells.

Wan et al¹¹⁶ have shown that osteoprogenitor cell adhesion was enhanced on poly-L-lactide (PLLA) and polystyrene (PS) surface with nanoscale and micron-scale roughness compared to smooth surfaces. OCT-1 osteoblast-like cells grew along the surface with two different nanoscale surfaces (PLLA) and grew inside micron-scale pits of PS. Webster and Ejiofor⁵¹ also reported the similar findings while comparing nano-and micron-scale grain boundary effects on osteoblast cell adhesion and proliferation. Teixeira and co-workers¹¹⁷ have studied epithelial contact guidance on well-defined micro-and-nanostructured substrates. They have demonstrated that when cells bridge nanoscale patterns, integrin binding was limited to substrate-adsorbed proteins on the top of the ridges. Topographic features smaller than FA architecture confines the cell attachment to the top portion of the topographic feature. The depth details of the correlation between nanofeatured topography and cell adhesion are emerging. The current understanding of nanotopography influence on adherent osteoblast behavior needs further scientific research.

Dalby and co-workers¹¹⁸ investigated osteoprogenitor response to defined topographies with nanoscale depths. They showed that high pit density reduced cell spreading and ordered arrays of nanopits were effective in this regard. Randomly created nanopits led to move cell spreading. Nanostructured surface presents

an opportunity to modulate cell behavior (cell adhesion and spreading). Lim and co-workers¹¹² studied the human foetal osteoblastic cell responses to polymer-demixed nanotopographic interfaces. They found that the cell adhesion was influenced by nanotopography (PLLA substrate with 3-45 nm nanofeatures) and interdependent on substratum surface characteristics of topography and surface chemistry. However, Cai and colleagues¹¹⁹ found no major differences in fibronectin adsorption or cell proliferation on 2 vs 20 nm Ti-films. These findings may be because of cell-type specific responses to nanofeatures of a given substrate surface.

Researchers^{118, 120} reported that fibroblast and MSCs motility varied drastically across a small range of nanostructures. Hansen and co-workers¹²¹ studied the effect of surface nanoscale topography (11-38 nm high islands) on elastic modulus of individual osteoblastic cells (MC3T3-E) as determined by atomic force microscopy (AFM). With AFM, they measured higher cellular modulus values for cells on nanofeatured surfaces compared with cells on flat control surfaces. They found that nanoscale topography influences the actual mechanical properties of the individual cell. These individual cell responses may be due to the resultant integrin-based remodeling of the cytoskeleton or more complex biophysical changes in the cell membrane. The future research on cell spreading or cell motility may be a valuable achievement for biomaterial engineering of implant-bone-mucosa interface.

MESENCHYMAL STEM CELLS AND DENTAL IMPLANT SURFACE:

Mesenchymal stem cells (MSCs) are generally defined as stem cells that are able to self-renew and to differentiate into various specialized tissues like fat, bone and cartilage, neural cells. ¹²²These cells are derived from somatic tissue which can be differentiated into mesenchymal lineages such as bone, cartilage, fat, and skin. MSCs are conventionally defined as adherent, non-hematopoitic cells expressing markers such as CD13, CD29, CD44, CD54, CD73, CD90, CD105, and CD166, and being negative for CD14, CD34, and CD45. ^{123, 124} MSCs were originally identified in the bone marrow ¹²⁵, but have been also extracted from tissues like adipose ^{126, 127}, heart ¹²⁸, dental pulp ¹²⁹, peripheral blood ¹³⁰, and cord blood ¹³¹. These cell can differentiate into adipocytes ¹³², chondrocytes ¹²⁶, osteoblasts ¹³³, neurons ^{134,135}, muscles ^{135, 136}, and hepatocytes ¹³⁷ *in vitro* after treatment with induction agents.

The main functions of MSCs are tissue development, homeostasis and reparation of damaged tissue. MSCs represents an innovative tool in regenerative medicine and odontoiatric field stem cell biology is fulfilling tools for the development of biomedical devices for bone or tooth restoration. ¹³⁸

The integration of implant with the surrounding bone and gingival tissue depends on healthy interaction between old tissue and implant surface. The real challenge is the capability of the implant surface to guide and direct colonization of cells and their differentiation. Tissue regeneration is a well organized and sequential process which follows cell migration, adhesion, proliferation, and differentiation. Researchers showed that some factors present in tissues and secreted during the inflammatory phase are able to attract MSCs to the injured site. ^{139,140} it has been shown that MSCs migration and proliferation were stimulated *in vitro* by many growth factors including PDGF^{141,142}, EGF^{142,143}, VEGF¹⁴⁴, TGF- β ^{141,145}, and, BMP-2 and BM P-4^{141,144}. These growth factors are released in the surrounding injured sites by cells involved in healing process. Also, plasma clot serves as a meshwork to fibrin molecules and releases system for bioactive factors that attract and differentiate MSCs into specific lineages (including growth factors). ¹⁴⁶⁻¹⁴⁸

Rock et al¹⁴⁹ has shown the contribution of platelets in the production of cryoprecipitates for use in a fibrin glue. Thus, they demonstrated the role of the platelet factors to stimulate the proliferation of MSCs. The plasma clot in contact with the surface of implant represents a 3-dimensional micro-porous structure that allows diffusion of regulatory system. ^{150, 151} Recruited MSCs at the injured site; adhere on the local ECM (extracellular matrix) and on the implant surface, which initiates an extensive proliferation to regenerate new tissue. Also, surface modifications of implants in the nanometer range enhanced the biological responses.

Under the influence of certain specific factors, MSCs differentiates into osteoblasts in contact with the surrounding bone, while they differentiate into fibroblasts in the gingival tissue region. Sometimes, implant surface is encapsulated by fibrous tissue due to proliferation and differentiation of MSCs into fibroblasts. This fibrous tissue protects biological bonding between implant and juxtaposed bone, which further causes a failure of the implant. Adhesion of fibroblastic cells has been shown to be lower on nanostructured surface compared to machined surfaces. As has shown the decreased fibroblast and increased osteoblast functions on ionic plasma deposited nanostructured Ti-coatings. Moreover, Miller et al compared the adhesion of fibroblastic cells and vascular cells to nanostructured poly (lactic co glycolic acid) films, and confirmed the lower fibroblast adhesion to nanoscale structures. Various surface treatments like machining, grit blasting, Ti/HA plasma spray, chemical etching, and anodization can be applied to modify the implant surface. Studies have demonstrated that nanorough Ti and nanotube-like structured Ti can enhance osteoblast adhesion and differentiation compared to their nanosmooth control control control. Inplant surfaces featured with micro-and —nano-pores have demonstrated to enhance greatly growth behavior, matrix production, and gene expression of human osteoblasts and ultimately the osseointegration. Iss, 159 Modulation of surface properties, thus control the steps of adhesion, proliferation, and differentiation of MSCs conditioning the tissue integration.

Branemark et al¹⁶¹ in 1983 described the osseointegration as a direct structural and functional bone to implant contact under functional load. Osseointegration at the tissue-implant interface is influenced by the chemistry, topography, and wettability of implant surfaces. In order to enhance osseointegration, numerous surface treatments at the nanometer scale have been performed on implants and experimented in various animals. Kubo et al¹⁶¹ observed a substantial increase by 3.1 times in bone-titanium interfacial strength by Ti nanotube (300 nm) at 2 weeks of implantation in femur rats. Ogawa et al ¹⁶² found an increased surface area upto 40% and a greater strength of osseointegration for the nanostructured Ti compared to an acid-etched surface, when tested in femur of rats. Some researchers have correlated the initial sequential events in bone formation with the long-term tissue response to these materials in human. ^{163, 164}

CaP and Hydroxyapatite coatings on Titanium implant surfaces greatly enhance osseointegration. During the healing process, calcium and phosphate ions are released into peri-implant micro-environment, which saturate the localized body fluids precipitating a biological apatite which further acts as a substrate for bone formation. Many researchers have demonstrated the significance of CaP-coated Ti implants for enhancing the osseointegration. ^{165, 166} Le Guehennec et al ¹⁶⁷ have reported the histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits, after 2 and 8 weeks of healing. They have shown that biomimetic coating method may enhance the osseointegration with the Ti-implant surfaces. For this, the Cap coating should dissolve or degrade by osteoclastic cells at a similar rate than bone apposition. CaP coatings are prepared by biomimetic methods at physiological temperature and pH from simulated body fluids. Liu et al ¹⁶⁸ have shown the possibility of the incorporation of growth factors during the precipitation of CaP coatings on Ti-implants. Moreover, they have shown that BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model.

III. CONCLUSIONS

Nanofeatured modification by different methods can alter the chemistry and surface topography of the implant surface. Many studies have reported that nanometer-controlled surfaces have a great effect on adsorption of proteins, blood clot formation, and cell behaviors which occur after implantation of dental implants. These early events have an effective role on the migration, adhesion, proliferation, and differentiation of MSCs. Nanostructured surfaces may control the differentiation pathways into specific lineages which further direct the nature of peri-implant tissues. Nanoscale modifications of Ti-endosseous implant surface enhance osseointegration. The outcomes of such biomaterials at nanoscale level may be defined by long-term clinical evaluation.

REFERENCES

- [1] Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, Öhman A. Osseointegrated titanium implants in the treatment of the edentulous jaw: Experience from a 10-year period. Scand J Plast Reconstr Surg 1977; 16:1–132.
- [2] Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone anchorage in man. Acta Orthop Scand 1981; 52:155–170.
- [3] J. Roz'e S. Babu A, Saffarzadeh M, Gayet-Delacroix A, Hoornaert, Layrolle P. "Correlating implant stability to bone structure." Clin Oral Implants Res 2009; 20(10):1140-1145.
- [4] Abuhussein H, Pagni G, Rebaudi A, Wang HL. The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res 2010; 21:129–136.
- [5] Trisi P, Lazzara R, Rebaudi A, Rao W, Testori T, Porter SS. Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla. J Periodontol 2003; 74:945–956.
- [6] Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991; 25:889–902.
- [7] Garcia AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 2005; 84:407–413.
- [8] Variola F, Yi JH, Richert L, Wuest JD, Rosei F, Nanci A. Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation. Biomaterials 2008; 29:1285–1298.
- [9] Le Guèhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007; 23(7):844–854.
- [10] Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. J Biomed Mater Res 1998; 40:1–11.
- [11] Tomasi C, Bressan E, Corazza B, Mazzoleni S, Stellini E, Lith A. Reliability and reproducibility of linear mandible measurements with the use of a cone-beam computed tomography and two object inclinations. Dentomaxillofac Radiol 2011; 4:244–250.
- [12] Mendonça G, Mendonça DBS, Aragão FJL, Cooper LF. Advancing dental implant surface technology—From micron- to nanotopography. Biomaterials 2008; 29:3822–3835.
- [13] Liu H, Webster TJ. Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials 2006; 28:354–369.
- [14] Whitesides GM. The "right" size in nanobiotechnology. Nat Biotechnol 2003; 21:1161–1165.
- [15] (Kovvuru SK, Mahita VN, Manjunatha BS, Babu BS. Nanotechnology: The Emerging Science in Dentistry. Journal of Orofacial Research, Jan-Mar 2012; 2(1):33-36.)
- [16] Christenson EM, Anseth KS, van den Beucken JJ, Chan CK, Ercan B, Jansen JA, et al. Nanobiomaterial applications in orthopedics. J Orthop Res 2007; 25:11–22.

- [17] Lavenus S, Ricquier JC, Louarn G, Layrolle P. "Cell interaction with nanopatterned surface of implants." Nanomedicine 2010; 5(6):937–947.
- [18] Sniadecki NJ, Desai RA, Ruiz SA, Chen CS. Nanotechnology for cell substrate interactions. Ann Biomed Eng 2006; 34:59–74.
- [19] Ferreira L, Karp JM, Nobre L, Langer R. New Opportunities: The use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 2008; 3:136–146.
- [20] Geesink RGT, De Groot K, Klein CPAT. "Chemical implant fixation using hydroxyl-apatite coatings. The development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite coatings on titanium substrates." Clin Orthop Relat Res 1987: 225:147–170.
- [21] Leeuwenburgh S, Layrolle P, Barrre F et al. "Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro." J Biomed Mater Res 2001; 56(2):208–215.
- [22] Shalabi MM, Wolke JG, Jansen JA. "The effects of implant surface roughness and surgical technique on implant fixation in an in vitro model." Clin Oral Implants Res 2006; 17(2):172–178.
- [23] Scotchford CA, Gilmore CP, Cooper E, Leggett GJ, Downes S. Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. J Biomed Mater Res 2002; 59:84–99.
- [24] Germanier Y, Tosatti S, Broggini N, Textor M, Buser D. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. Clin Oral Implants Res 2006; 17:251–7.
- [25] Yao C, Slamovich EB, Webster TJ. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J Biomed Mater Res A 2008; 85:157–166.
- [26] Oh S, Brammer KS, Li YSJ et al. "Stem cell fate dictated solely by altered nanotube dimension." Proceedings of the National Academy of Sciences of the United States of America 2009; 106(7):2130–2135.
- [27] Zhang L, Han Y. "Effect of nanostructured titanium on anodization growth of self-organized TiO2 nanotubes." Nanotechnology 2010; 21(5), Article ID 055602.
- [28] Le, Guehennec L.; Soueidan, A.; Layrolle, P.; Amouriq, Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials 2007; 23(7):844–854.
- [29] Frauchiger VM, Schlottig F, Gasser B, Textor M. Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials 2004; 25(4):593–606.
- Shankar K, Mor GK, Prakasam HE et al. "Highly ordered TiO2 nanotube arrays up to 220 μ m in length: use in water photoelectrolysis and dye-sensitized solar cells." Nanotechnology 2007; 18(6):11 pages, Article ID 065707.
- [31] Kang SH, Kim HS, Kim JY, Sung YE. "An investigation on electron behavior employing vertically aligned TiO2 nanotube electrodes for dye-sensitized solar cells." Nanotechnology 2009; 20(35): 6 pages, Article ID 355307.
- [32] Brammer KS, Oh S, Cobb CJ, Bjursten LM, Heyde HVD, Jin S. "Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface." Acta Biomaterialia 2009; 5(8):3215–3223.
- [33] Von Wilmowsky C, Bauer S, Lutz R, Meisel M, Neukam FW, Toyoshima T, Schmuki P, Nkenke E, Schlegel KA. *In vivo* evaluation of anodic TiO2 nanotubes: An experimental study in pig. J Biomed Mater Res B-Appl Biomater. 2009: 89:165–171.
- Variola F, Brunski JB, Orsini G, Tambasco de Oliveira P, Wazen R, Nanci A. Nanoscale surface modifications of medically relevant metals: State-of-the art and perspectives. Nanoscale 2011; 3:335–353.
- [35] Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, McKee MD. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res 1998; 40:324–335.
- Wang XX, Hayakawa S, Tsuru K, Osaka A. Bioactive titania-gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 2002; 23:1353–7.
- [37] Mante FK, Little K, Mante MO, Rawle C, Baran GR. Oxidation of titanium, RGD peptide attachment, and matrix mineralization rat bone marrow stromal cells. J Oral Implantol 2004; 30:343–9.
- [38] Ellingsen JE, Thomsen P, Lyngstadaas SP. Advances in dental implant materials and tissue regeneration. J Periodontol 2006; 41:136–56.
- [39] Isa ZM, Schneider GB, Zaharias R, Seabold D, Stanford CM. Effects of fluoride modified titanium surfaces on osteoblast proliferation and gene expression. Int J Oral Maxillofac Implants 2006; 21:203–11.
- [40] Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmen A, et al. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit blasted c.p. titanium endosseous implants. Biomaterials 2006; 27: 926–36.
- [41] Guo J, Padilla RJ, Ambrose W, De Kok IJ, Cooper LF. Modification of TiO2 grit blasted titanium implants by hydrofluoric acid treatment alters adherent osteoblast gene expression in vitro and in vivo. Biomaterials 2007; 28:5418–25.
- [42] Ellingsen JE, Johansson CB, Wennerberg A, Holmen A. Improved retention and bone-to-implant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants 2004; 19:659–66.
- [43] Berglundh T, Abrahamsson I, Albouy JP, Lindhe J. Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. Clin Oral Implants Res 2007; 18:147–52.
- [44] Stanford CM, Johnson GK, Fakhry A, Gratton D, Mellonig JT, Wanger W. Outcomes of a fluoride modified implant one year after loading in the posterior-maxilla when placed with the osteotome surgical technique. Appl Osseo Res 2006; 5:50–5.
- [45] Vetrone F, Variola F, Tambasco de Oliveira P, Zalzal SF, Yi JH, Sam J, Bombonato-Prado KF, Sarkissian A, Perepichka DF, Wuest JD et al. Nanoscale oxidative patterning of metallic surfaces to modulate cell activity and fate. Nano Lett 2009; 9:659–665.
- [46] Zhou J, Chang C, Zhang R, Zhang L. Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 2007; 7:804–9.
- [47] Kim HM, Kokubo T, Fujibayashi S, Nishiguchi S, Nakamura T. Bioactive macroporous titanium surface layer on titanium substrate. J Biomed Mater Res 2000; 5(52):553–7.
- [48] Wang XX, Hayakawa S, Tsuru K, Osaka A. A comparative study of in vitro apatite deposition on heat, H(2)O(2)-, and NaOH-treated titanium surfaces. J Biomed Mater Res 2001; 54:172–8.
- [49] Uchida M, Kim HM, Miyaji F, Kokubo T, Nakamura T. Apatite formation on zirconium metal treated with aqueous NaOH. Biomaterials 2002; 23:313–7.
- [50] Oh SH, Finones RR, Daraio C, Chen LH, Jin S. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 2005; 26:4938–43.
- [51] Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 2004; 25:4731–9.
- [52] Coelho PG, Suzuki M. Evaluation of an ibad thin-film process as an alternative method for surface incorporation of bioceramics on dental implants-A study in dogs. J Appl Oral Sci 2005; 13:87–92.

- Reising A, Yao C, Storey D, Webster TJ. Greater osteoblast long-term functions on ionic plasma deposited nanostructured [53] orthopedic implant coatings. J Biomed Mater Res A 2008; 87:78-83.
- [54] Tisdel CL, Goldberg VM, Parr JA, Bensusan JS, Staikoff LS, Stevenson S. The influence of a hydroxyapatite and tricalciumphosphate coating on bone growth into titanium fiber-metal implants. Journal of Bone and Joint Surgery American Volume 1994; 76(2):159–71.
- [55] Ducheyne, P.; Healy, K. Bioceramics. 1st International Bioceramics Symposium; Kyoto, Japan: Ishiyaku EuroAmerica Inc;
- Chae JC, Collier JP, Mayor MB, Surprenant VA, Dauphinais LA. Enhanced ingrowth of porouscoated CoCr implants plasma-[56] sprayed with tricalcium phosphate. J Biomed Mater Res 1992; 26(1):93-102.
- [57] Soballe K, Overgaard S, Hansen ES, Brokstedt-Rasmussen H, Lind M, Bunger C. A review of ceramic coatings for implant fixation. Journal of Long-Term Effects of Medical Implants 1999; 9(1-2):131-151.
- Wheeler DL, Campbell AA, Graff GL, Miller GJ. Histological and biomechanical evaluation of calcium phosphate coatings [58] applied through surface-induced mineralization to porous titanium implants. J Biomed Mater Res 1997; 34(4):539-43.
- Willmann G. Coating of implants with hydroxyapatite material connections between bone and metal. Adv Eng Mater 1999; [59]
- Knowles JC, Gross K, Berndt CC, Bonfield W. Structural changes of thermally sprayed [60]
- [61] hydroxyapatite investigated by Rietveld analysis. Biomaterials 1996; 17(6):639-45.
- [62] McPherson R, Gane N, Bastow TJ. Structural characterization of plasma sprayed hydroxylapatite coatings. J Mater Sci: Materials in Medicine 1995; 6:327-334.
- [63] Frayssinet P, Tourenne F, Primout I, Delga C, Sergent E, Besse C, Conte P, Guilhem A. A study of structure and degradation of nonpolymeric biomaterials implanted in bone using reflected and transmitted light microscopy. Biotechnic and Histochemistry 1993; 68(6):333-41.
- Huaxia J, Ponton C, Marquis P. Microstructural characterization of hydroxyapatite coating on titanium. J Mater Sci: Materials in [64] Medicine 1992; 3:283-287.
- Weinlaender M, Beumer J, Kenney EB, Moy PK, Adar F. Raman microprobe investigation of the calcium phosphate phases of [65] three commercially available plasma-flame-sprayed hydroxyapatite coated dental implants. J Mater Sci: Materials in Medicine
- [66] Zyman Z, Weng J, Liu X, Li X, Zhang X. Phase and structural changes in hydroxyapatite coatings under heat treatment. Biomaterials 1994; 15(2):151-5.
- Gross KA, Berndt CC, Goldschlag DD, Iacono VJ. In Vitro Changes of Hydroxyapatite Coatings. Int J Oral Maxillofac Implants [67] 1997; 12(5):589-597.
- Hench LL. Bioceramics from Concept to Clinic. Journal of the American Ceramic Society 1991; 74(7):1487-1510.
- Bloebaum RD, Beeks D, Dorr LD, Savory CG, DuPont JA, Hofmann AA. Complications with hydroxyapatite particulate [69] separation in total hip arthroplasty. Clin Orthop Relat Res 1994; 15(298):19-26.
- [70] Gross KA, Babovic M. Influence of abrasion on the surface characteristics of thermally sprayed hydroxyapatite coatings. Biomaterials 2002; 23(24):4731-4737.
- [71] Gross KA, Berndt CC, Iacono VJ. Variability of Hydroxyapatite-Coated Dental Implants. Int J Oral Maxillofac Implants 1998; 13(5):601-610.
- Jarcho M. Retrospective analysis of hydroxyapatite development for oral implant applications. DCNA 1992; 36(1):19-26.
- [73] Lewandowski JA, Johnson CM. Structural failure of osseointegrated implants at the time of restoration-A clinical report. J Prosthet Dent 1989; 62(2):127-9.
- [74] Overgaard S, Lind M, Josephsen K, Maunsbach AB, Bunger C, Soballe K. Resorption of
- [75] hydroxyapatite and fluorapatite ceramic coatings on weight-bearing implants: a quantitative and morphological study in dogs. J Biomed Mater Res 1998; 39(1):141-52.
- Park E, Condrate RA, Hoelzer DT, Fishman GS. Interfacial characterization of plasma-sprayed coated calcium phosphate on Ti-[76] 6Al-4V. J Mater Sci: Materials in Medicine 1998; 9:643-649.
- Yamamuro T, Hench LL, Wilson J. Calcium Phosphate and Hydroxylapatite Ceramics. In: Yamamuro T, Hench LL, Wilson J. [77] editors. Handbook of Bioactive Ceramics 1990 Vol. II. CRC; Boca Raton.
- [78] Koeneman J, Lemons J, Ducheyne P, Lacefield W, Magee F, Calahan T, Kay J. Workshop On Characterization of Calcium Phosphate Materials. J Appl Biomater 1990; 1: 79-90.
- [79] Koch B, Wolke JG, de Groot K. X-ray diffraction studies on plasma-sprayed calcium phosphate coated implants. J Biomed Mater Res 1990: 24(6):655-67.
- Obgiso M, Yamashita Y, Matsumoto T. Differences in microstructural characteristics of dense HA and HA coating. J Biomed [80] Mater Res 1998; 41(2):296-303.
- [81] Radin S, Ducheyne P, Falaize S, Hammond A. In vitro transformation of bioactive glass granules into Ca-P shells. J Biomed Mater Res 2000; 49(2):264-272.
- Lusquinos F, De Carlos A, Pou J, Arias JL, Boutinguiza M, Leon B, Perez-Amor M, Driessens FCM, Hing K, Gibson I, Best S, [82] Bonfield W. Calcium phosphate coatings obtained by Nd: YAG laser cladding: Physicochemical and biologic properties. J Biomed Mater Res Part A 2003; 64 A (4):630-637.
- [83] Lusquinos F, Pou J, Arias JL, Boutinguiza M, Leon B, Perez-Amor M, Driessens FCM, MerryJC, Gibson I, Best S, Bonfield W. Production of calcium phosphate coatings on Ti6Al4V obtained by Nd: yttrium-aluminum-garnet laser cladding. J Appl Phy 2001; 90(8):4231-4236.
- [84] Evans SL, Gregson PJ. The effect of a plasma-sprayed hydroxyapatite coating on the fatigue properties of Ti-6Al-4V. Materials Letters 1993; 16(5):270-4.
- [85] Abrahamsson I, Albouy JP, Berglundh T. Healing at fluoride-modified implants placed in wide marginal defects: An experimental study in dogs. Clin Oral Implants Res 2008; 19:153-159.
- [86] Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA. Corrosion behavior of commercially pure titanium shot blasted with different materials and size of shot particles for dental implant applications. Biomaterials 2003; 24:263–273.
- Esposito M, Hirsch JM, Lekholm U, Thomsen P. "Biological factors contributing to failures of osseointegrated oral implants: (I). Success criteria and epidemiology." Eur J Oral Sci 1998: 106(1):527–551.
 Esposito M, Hirsch JM, Lekholm U, Thomsen P. "Biological factors contributing to failures of osseointegrated oral implants: [87]
- [88] (II). Etiopathogenesis," Eur J Oral Sci 1998; 106(3):721-764.
- M'ueller WD, Gross U, Fritz T et al. "Evaluation of the interface between bone and titanium surfaces being blasted by [89] aluminium oxide or bioceramic particles." Clin Oral Implants Res 2003; 14(3):349-356.

- Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P. "Osteoblastic cell behaviour on different [90] titanium implant surfaces." Acta Biomaterialia 2008; 4(3):535–543.
- Citeau A, Guicheux J, Vinatier C et al. "In vitro biological effects of titanium rough surface obtained by calcium phosphate grid [91] blasting." Biomaterials 2005; 26(2):157-165.
- [92] Ivanoff CJ, Hallgren C, Widmark G, Sennerby L, Wennerberg A. Histologic evaluation of the bone integration of TiO2 blasted and turned titanium microimplants in humans. Clin Oral Implants Res 2001; 12:128-134
- Rasmusson L, Kahnberg KE, Tan A. Effects of implant design and surface on bone regeneration and implant stability: An [93] experimental study in the dog mandible. Clin Implant Dent Relat Res 2001; 3:2-8.
- [94] Ben-Nissan B, Choi AH. Sol-gel production of bioactive nanocoatings for medical applications. Part 1: an introduction. Nanomed 2006; 1:311-9.
- [95] Liu DM, Troczynski T, Tseng WJ. Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials 2001; 22:1721-30
- [96] Kim HW, Koh YH, Li LH, Lee S, Kim HE. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials 2004; 25:2533-8.
- Chai CS, Gross KA, Ben-Nissan B. Critical ageing of hydroxyapatite sol-gel solutions. Biomaterials 1998; 19(24):2291–2296.
- [98] Haddow DB, James PF, Van Noort R. Sol-gel derived calcium phosphate coatings for biomedical applications. J Sol-Gel Sci Technol 1998; 13(1-3):261-265.
- [99] Song CL, Weng WJ, Cheng K, Qu HB, Du PY, Shen G, Han GR, Yang J, Ferreira JMF. Sol-gel preparation and preliminary in vitro evaluation of fluorapatite/hydroxyapatite solid solution films. J Mate Sci Technol 2003; 19(5):495-498.
- [100] Piveteau LD, Gasser B, Schlapbach L. Evaluating mechanical adhesion of sol- gel titanium dioxide coatings containing calcium phosphate for metal implant application. Biomaterials 2000; 21:2193-201.
- [101] Arias JL, Mayor MB, Pou J, Leng Y, Leo'n B, Pe'rez-Amor M. Micro- and nanotesting of calcium phosphate coatings produced by pulsed laser deposition. Biomaterials 2003; 24:3403-8.
- [102] Choi AH, Ben-Nissan B. Sol-gel production of bioactive nanocoatings for medical applications. Part II: current research and development. Nanomed 2007; 2:51-61.
- [103] Nishimura I, Huang Y, Butz F, Ogawa T, Lin L, JakeWang C. Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration. Nanotechnology 2007; 18:245101 (9pp).
- [104] Gutwein LG, Webster TJ. Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomaterials 2004; 25:4175-83.
- Mendes VC, Moineddin R, Davies JE. The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium [105] surfaces. Biomaterials 2007; 28: 4748-55.
- Balasundaram G, Sato M, Webster TJ. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast [106] adhesion similar to functionalizing with RGD. Biomaterials 2006; 27:2798-805.
- [107] Fath K, EdgellC, BurridgeK. The distribution of distinct integrins in focal contacts is determined by the substratum composition. J Cell Sci 1989; 92:67-75.
- Tosatti S, Schwartz Z, Campbell C, Cochran DL, Vande Vondele S, Hubbell JA, et al. RGD-containing peptide [108] GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces. J Biomed Mater Res A 2004; 68:458-72.
- [109] Sinha RK, Tuan RS. Regulation of human osteoblast integrin expression by orthopedic implant materials. Bone 1996; 18:451-7.
- [110] Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J 2007; 92:2964-74.
- [111] Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 2007; 28:3074-82.
- Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve [112] vitronectin. Tissue Eng 2001; 7:291-301.
- [113] Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 2000; 51:475-83.
- Lim JY, Hansen JC, Siedlecki CA, Runt J, Donahue HJ. Human foetal osteoblastic cell response to polymer-demixed [114] nanotopographic interfaces. J R Soc Interface 2005; 2:97-108.
- [115] Park GE, Webster TJ. A review of nanotechnology for the development of better orthopedic implants. J Biomed Nanotechnol 2005; 1:18-29.
- [116] Brunette DM. The effects of implant surface topography on the behavior of cells. Int J Oral Maxillofac Implants 1988; 3:231-4.
- [117] Andersson AS, Ba"ckhed F, von Euler A, Richter-Dahlfors A, Sutherland D, Kasemo B. Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials 2003; 24:3427-36.
- [118] Wan Y, Wang Y, Liu Z, Qu X, Han B, Bei J, et al. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly (L-lactide). Biomaterials 2005; 26:4453-9
- [119] Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 2003; 116:1881-92.
- [120] Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 2007; 6:997-1003.
- [121] Cai K, Bossert J, Jandt KD. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloids Surf B Biointerfaces 2006; 49:136-44.
- [122] Alsberg E, Feinstein E, Joy MP, Prentiss M, Ingber DE. Magnetically-guided self-assembly of fibrin matrices with ordered nanoscale structure for tissue engineering. Tissue Eng 2006; 12:3247-56.
- Hansen JC, Lim JY, Xu LC, Siedlecki CA, Mauger DT, Donahue HJ. Effect of surface nanoscale topography on elastic modulus [123] of individual osteoblastic cells as determined by atomic force microscopy. J Biomech 2007; 40:2865-71.
- [124] Suchaneka J, Soukupb T, Visekb B, Ivancakovaa R, Kucerovac L, Mokryb J. Dental pulp stem cells and their characterization. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2009; 153:31–36.
- [125]
- Richter W. "Mesenchymal stem cells and cartilage in situ regeneration." J Internal Med 2009; 266(4):390–405. Ichim TE, Alexandrescu DT, Solano F et al. "Mesenchymal stem cells as anti-inflammatories: Implications for treatment of [126] Duchenne muscular dystrophy." Cellular Immunology 2010; 260(2):75-82.
- Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. "Heterotopic of bone marrow: analysis of precursor cells for [127] osteogenic and hematopoietic tissues." Transplantation 1968; 6(2):230-247.

- [128] Zannettino ACW, Paton S, Arthur A et al. "Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo." J Cell Physiol 2008; 214(2):413–421.
- [129] Wickham MQ, Erickson GR, Gimble JM, Vail TP, Guilak F. "Multipotent stromal cells derived from the infrapatellar fat pad of the knee." Clin Orthop Relat Res 2003; 412:196–212.
- [130] Hoogduijn MJ, Crop MJ, Peeters AMA et al. "Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities." Stem Cells and Development 2007; 16(4):597–604.
- [131] Jo YY, Lee HJ, Kook SY et al. "Isolation and characterization of postnatal stem cells from human dental tissues." Tissue Eng 2007; 13(4):767–773.
- [132] He Q, Wan C, Li G. "Concise review: multipotent mesenchymal stromal cells in blood." Stem Cells 2007; 25(1):69–77.
- [133] Oh W, Kim DS, Yang YS, Lee JK. "Immunological properties of umbilical cord blood-derived mesenchymal stromal cells," Cellular Immunology 2008; 251(2):116–123.
- [134] Morganstein DL, Wu P, Mane MR, Fisk NM, White R, Parker MG. "Human fetal mesenchymal stem cells differentiate into brown and white adipocytes: a role for ERRα in human UCP1 expression." Cell Res 2010; 20(4):434–444.
- [135] Marinucci L, Balloni S, Becchetti E et al. "Effects of hydroxyapatite and Biostite□ on osteogenic induction of hMSC." Annals Biomed Eng 2010; 38(3):640–648.
- [136] Lepski G, Jannes CE, Maciaczyk J et al. "Limited Ca2+ and PKA-pathway dependent neurogenic differentiation of human adult mesenchymal stem cells as compared to fetal neuronal stem cells." Expl Cell Res 2010; 316(2):216–231.
- [137] Engler AJ, Sen S, Sweeney HL, Discher DE. "Matrix elasticity directs stem cell lineage specification." Cell 2006; 126(4):677–689
- [138] Liu Y, Yan X, Sun Z et al. "Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in MDX Mice." Stem Cells and Development 2007; 16(5):695–706.
- [139] Chivu M, Dima SO, Stancu CI et al. "In vitro hepatic differentiation of human bone marrow mesenchymal stem cells under differential exposure to liver-specific factors." Translational Res 2009; 154(3):122–132.
- [140] Atala A, Lanza R, Thomson JA, Nerem RM. Principles of Regenerative Medicine; Elsevier: Burlington, MA, USA, 2008; Volume 1448
- [141] Agis H, Kandler B, Fischer MB, Watzek G, Gruber R. "Activated platelets increase fibrinolysis of mesenchymal progenitor cells." J Orthop Res 2009; 27(7):972–980.
- [142] Vogel JP, Szalay K, Geiger F, Kramer M, Richter W, Kasten P. "Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics." Platelets 2006; 17(7):462–469.
- [143] Mishima Y, Lotz M. "Chemotaxis of human articular chondrocytes and mesenchymal stem cells." J Orthop Res 2008; 26(10):1407–1412.
- Ozaki Y, Nishimura M, Sekiya K et al. "Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells." Stem Cells and Development 2007; 16(1):119–129.
- [145] Kuznetsov SA, Friedenstein AJ, Robey PG. "Factors required for bone marrow stromal fibroblast colony formation in vitro." British Journal of Haematology 1997; 97(3):561–570.
- Fiedler J, Leucht F, Waltenberger J, Dehio C, Brenner RE. "VEGF-A and PIGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells." Biochemical and Biophysical Research Communications 2005; 334(2):561–568.
 Jian H, Shen X, Liu I, Semenov M, He XI, Wang XF. "Smad3-dependent nuclear translocation of β-catenin is required for TGF-
- Jian H, Shen X, Liu I, Semenov M, He XI, Wang XF. "Smad3-dependent nuclear translocation of β -catenin is required for TGF- β 1-induced proliferation of bone marrow derived adult human mesenchymal stem cells." Genes and Development 2006; 20(6):666–674.
- [148] Catelas I, Dwyer JF, Helgerson S. "Controlled release of bioactive transforming growth factor beta-1 from fibrin gels in vitro." Tissue Eng C 2008; 14(2):119–128.
- [149] Wong C, Inman E, Spaethe R, Helgerson S. "Fibrin based biomaterials to deliver human growth factors." Thrombosis and Haemostasis 2003: 89(3):573–582.
- [150] Mosesson MW. "Fibrinogen and fibrin structure and functions." Journal of Thrombosis and Haemostasis 2005; 3(8):1894–1904.
- [151] Rock G, Neurath D, Lu M, Alharbi A, Freedman M. "The contribution of platelets in the production of cryoprecipitates for use in a fibrin glue." Vox Sanguinis 2006; 91(3):252–255.
- [152] Catelas I, Sese N, Wu BM, Dunn JCY, Helgerson S, Tawil B. "Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro." Tissue Eng 2006; 12(8):2385–2396.
- [153] Schildhauer TA, Seybold D, Geßmann J, Muhr G, K"oller M. "Fixation of porous calcium phosphate with expanded bone marrow cells using an autologous plasma clot." Materialwissenschaft und Werkstofftechnik 2007; 38(10):1012–1014.
- [154] Hobkirk JA. "Progress in implant research." Int Dent J 1983; 33(4):341–349.
- [155] Eisenbarth E, Meyle J, Nachtigall W, Breme J. "Influence of the surface structure of titanium materials on the adhesion of fibroblasts." Biomaterials 1996; 17(14):1399–1403.
- [156] Cohen A, Liu-Synder P, Storey D, Webster TJ. "Decreased fibroblast and increased osteoblast functions on ionic plasma deposited nano-structured Ti coatings." Nano Res Lett 2007; 2(8):385–390.
- [157] Miller D, Vance R, Thapa A, Webster T, Haberstroch K. "Comparison of fibroblast and vascular cell adhesion to nano structured poly(lactic co glycolic acid) films." Applied Bionics and Biochemics 2005; 2(1):1–7.
- [158] Puckett S, Pareta R, Webster TJ. "Nano rough micron patterned titanium for directing osteoblast morphology and adhesion." Int J Nanomed 2008; 3(2):229–241.
- [159] Yao C, Slamovich EB, Webster TJ. "Enhanced osteoblast functions on anodized titanium with nanotube-like structures." J Biomed Mater Res A 2008; 85(1):157–166.
- [160] Frosch KH, Barvencik F, Viereck V et al., "Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels." J Biomed Mater Res A 2004; 68(2):325–334.
- [161] Oh SH, Finones RR, Daraio C, Chen LH, Jin S. "Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes." Biomaterials 2005; 26(24):4938–4943.
- [162] Br°anemark PI, Adell R, Albrektsson T, Lekholm U, Lundkvist S, Rockler B. "Osseointegrated titanium fixtures in the treatment of edentulousness." Biomaterials 1983; 4(1):25–28.
- [163] 161.Kubo K, Tsukimura N, Iwasa F et al. "Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model." Biomaterials 2009; 30(29): 5319–5329.
- [164] Ogawa T, Saruwatari L, Takeuchi K, Aita H, Ohno N. "Ti nano-nodular structuring for bone integration and regeneration." J Dent Res 2008; 87(8):751–756.

- [165] Boyan BD, Schwartz Z, Hambleton JC. "Response of bone and cartilage cells to biomaterials in vivo and in vitro." J Oral Implantol 1993; 19(2):116–136.
- [166] Kohavi D, Schwartzt Z, Amir D, Mai CM, Gross U, Sela J. "Effect of titanium implants on primary mineralization following 6 and 14 days of rat tibial healing." Biomaterials 1992; 13 (4):255–260.
- Jeffcoat MK, McGlumphy EA, Reddy MS, Geurs NC, Proskin HM. "A comparison of hydroxyapatite (HA)- coated threaded, HA-coated cylindric, and titanium threaded endosseous dental implants." Int J Oral Maxillofac Implants 2003; 18(3):406–410.
- [168] McGlumphy EA, Peterson LJ, Larsen PE, Jeffcoat MK. "Prospective study of 429 hydroxyapatite-coated cylindric omniloc implants placed in 121 patients." Int J Oral Maxillofac Implants 2003; 18(1):82–92.
 [169] Le Guehennec L, Goyenvalle E, Lopez-Heredia MA, Weiss P, Amouriq Y, Layrolle P. "Histomorphometric analysis of the
- [169] Le Guehennec L, Goyenvalle E, Lopez-Heredia MA, Weiss P, Amouriq Y, Layrolle P. "Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits." Clin Oral Implants Res 2008; 19(11):1103–1110.
- [170] Liu Y, De Groot K, Hunziker EB. "BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model." Bone 2005; 36(5):745–757.