The prevalence of *Plasmodium falciparum* in children below 12 years presenting with malaria infection in Sagamu community

1Okunye O L, 2Odeleye, F. O 3Adeboye, S

1, 2, 3Department of Pharmaceutical Microbiology, Olabisi Onabanjo University, Ogun State

ABSTRACT: This study was conducted out to determine the prevalence of *Plasmodium falciparum* in children below 12 years presenting with malaria infection in Sagamu community. Two hundred samples of the children below 12 years of age comprises of 120 females and 80 males visiting Olabisi Onabanjo University Teaching Hospital were examined for malaria infection of which 140(70%) were confirmed by microscopy to be positive to *Plasmodium falciparum*. The gender ratio of the infected patients to microscopy were 80 females to 60 males. Of the total samples examined, 100 (71%) patients were recorded within the age group below 6 years while 40(29%) were above 6-12 years of age. Thus, there is need for more awareness on the prevalence of *Plasmodium falciparum* especially amongst children and cases of fever and other malaise feelings.

KEYWORDS: Prevalence, *Plasmodium falciparum*, Malaria infection.

I. INTRODUCTION

Malaria is a mosquito-borne infectious disease of humans and other animals caused by parasitic protozoans which is a type of single cell microorganism of the plasmodium. It remains one of the world’s greatest childhood killers and is substantial obstacle to social and economic development in the tropics (Ekwebene, 2012).

The impact of the malaria burden is much more devastating among children particularly in sub Saharan African region. Almost all of the malaria deaths in sub-Saharan Africa occur in children below five years of age and this translates to the child mortality of nearly 1 million each year (Hopkins et. al., 2007). Malaria is the most prevalent tropical disease in the world today with about 216 million cases of malaria and an estimated 3.3 billion people reported at risk, thus malaria is still a major public health issue [WHO, 2011]. Each year, it causes disease in approximately 650 million people and kills between one and three million, most of them, young children in Sub-Saharan Africa (Hay et.al., 2004). Indeed, a child dies of malaria every 30 seconds, a death toll of about 3000 children every day in the sub region alone [WHO, 2003, 2008].

The high burden of childhood *Plasmodium falciparum* is considered as more dangerous than the other three species (*P. vivax*, *P. malariae* and *P. ovale*) of the human malaria parasites because greater than 80% of malaria-related morbidity and mortality occurs in sub-Saharan Africa due to infections with *Plasmodium falciparum* [WHO, 2005]. *Plasmodium falciparum* is probably the single most important pathogen encountered by children growing up in sub-Saharan Africa. Symptoms usually begin ten to fifteen days after being bitten [WHO, 2014]. In humans, malaria is caused by *Plasmodium falciparum*, *Plasmodium malariae*, *Plasmodium ovale*, *Plasmodium vivax* and *Plasmodium knowlesi* (Mueller et.al., 2007).

Everyone living in an endemic area becomes infected with *Plasmodium falciparum* during childhood. The sub-Saharan Africa remains the region with the highest burden of malaria accounting for nearly 90% of global malaria deaths because *Plasmodium falciparum* is the predominant species and the most effective malaria vector. The *Anopheles gambiae* is the mosquito arthropod vectors aid the spread of this infection.

Sagamu is community in Ogun state, located 50 km north of Lagos state, in southwest Nigeria. The town is spread over 614 Km² (237/Sqm) with an estimated population of 228,382. A large proportion of the population commutes to the city of Lagos daily for work or other commercial activities. Malaria is highly endemic in the area, accounting for most outpatient visits in the health facilities. Transmission occurs all year around with an upsurge in the rainy season -June to September (Salako et.al., 1990). The community is served by several schools, hospitals (Primary Health Care Centers, Private and Tertiary Hospitals), banks and hotels.
Methods

Study area

This study was carried out in Olabisi Onabanjo University Teaching Hospital, Sagamu on the targeted population of 200 children below the age of 12 years old; (80 males and 120 females) resident within sagamu community.

Samples collection

Blood Samples were collected from 200 Symptomatic patients presenting with cases of fever to the Department of parasitology of the Olabisi Onabanjo University Teaching Hospital. Thick film and thin films were made into triplicate from EDTA bottles within 10 minutes of collection.

Microscopy

Duplicate labeled slides were use for thick and thin blood film preparation Two drops of the blood was placed on the Slide for thick film and a drop was placed for thin film.

The thin film preparation:

The methyl alcohol fixed smears were placed in staining tray of Giemsa’s solution for 30 minutes, the preparation were washed under running tap water and covered for about 15 second with buffer, the slide was allowed to dry in a draining rack and were examined with the oil immersion objective.

The thick film preparation: The smear dried blood protected from dust and flies after 18 hours were stained with Giemsa’s and were allowed to stay for 45 minutes, the preparation was flooded with buffered water and were washed gently in the water. The slides were allowed to dry and were examined with the oil immersion objective.

Rapid diagnostic test

A drop of about (20µL) of the blood sample was taken with a pipette dropper to the one step malaria anti-plasmodium falciparum serum well, (90 µL) of the diluents buffer was added to the sample. The result was read and interpreted within 5-15 minutes.

II. RESULTS

In this study, 200 blood samples of infected patients were examined. Of the total samples collected, there were 120 female and 80 male samples. The total number of samples confirmed with malaria infection caused by plasmodium falciparum was 140 children of which 80 were females while 60 males children were recorded in the ratio of 4:3 respectively. For the rapid diagnostic test, amongst 140 samples observed, 43(30.7 %) tested positive for malaria caused by Plasmodium falciparum while 97(69.3 %) tested negative as shown in Table1 and Table 2 below.

<table>
<thead>
<tr>
<th>TABLE 1.0 : PERCENTAGE SAMPLE DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENDER DISTRIBUTION</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2.0: AGE AND GENDER DISTRIBUTION OF THE INFECTED SAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE GROUPS (YEARS)</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>≤1</td>
</tr>
<tr>
<td>1-3</td>
</tr>
<tr>
<td>4-6</td>
</tr>
<tr>
<td>7-9</td>
</tr>
<tr>
<td>10-12</td>
</tr>
</tbody>
</table>
The prevalence of Plasmodium falciparum in children below 12...

III. DISCUSSION AND CONCLUSION

Two samples presenting with the symptoms of malaria fever were examined in this study. Of the 200 samples examined, 60 samples were tested negative to malaria infection, though presented with malaria symptoms, the absence of Plasmodium falciparum in these samples which could non-malarial parasitic infections or bacteria presence, having similar symptoms to malaria, examples of such conditions are cold, flu, some viral infections, rickettsia(tick bite diseases), hepatitis – causing jaundice; acute renal(kidney) failure – causing diminished urine output; diabetes – causing deepacidotic breathing gastroenteritis, typhoid fever, meningitis, high temperature(fever), chills, headache, sweats, tiredness, nausea/vomiting, dry cough, muscle ache (Nordqvist, 2013).

However, 140 samples tested were positive for malaria infection, eliciting the prevalence of malaria in Sagamu community, which agreed with the findings of Ekwebene, that malaria remains one of the world’s greatest childhood killers and is substantial obstacle to social and economic development in the tropics (Ekwebene, 2012).

Though, there is relatively low variation in the gender distribution of the parasite in this study in the ratio of 80(57%) to 60(43%) as elicited in Table 2.0, the disparity in values amongst both genders affects both sexes and susceptibility to malaria infection is not influenced by gender (Okonko et al., 2012). This also agreed with the finding of (Mbanugo and Ejim 2000) who reported that sex did not affect the prevalence among children.

All the 140 positive samples examined for malaria infection were caused by Plasmodium falciparum which is in line with the findings of World Health Organization 1992 who report that sub-Saharan Africa had the highest burden of malaria accounting for nearly 90% of global malaria deaths caused by Plasmodium falciparum [WHO,1992] and also with the findings of Achidi et.al., 1997.
Also, samples less than 1 year had the highest number of samples with 41, followed by samples between ages 1-3 years with a total number of 32. Samples between ages 4-6 years had 21 patients while subjects between ages 7-9 years and 10-12 years had 21 and 19 infected patients. The prevalence of malaria is lower among children above 6 years, in this study could be attributed to developed immunity against plasmodium parasite (Brown, 1980) as a result of previous exposure to infective mosquitoes each year and become clinically immuned (Greenwood et al., 1987).

All the 140 samples tested positive for malaria infection caused by *Plasmodium falciparum* using the microscopy technique. The rapid diagnostic test kit, for patients below 1 year elicited 13 positive while 28 negative. In patients between 1-3 years; 10 were tested positive while 22 tested negative, for patients between 4-6 years; 8 were tested positive while 19 were negative, for patients between 7-9 years, 7 were recorded to be positive while 14 were tested negative and in patients between 10-12 years, 4 were tested positive and 15 were negative to rapid diagnostic test. 30% of the samples examined were RDT positive while 70% were RDT negative. The microscopy tests elicited 100% positive on the samples examined, thereby indicating the effectiveness of microscopy method of diagnosis over Rapid Diagnostic Test kit, which agreed with the findings that microscopic detection and identification of plasmodium species in Giemsa-stained thick blood film (for screening the presenting malaria parasite) and thin blood films for species’ confirmation remains the gold standard for laboratory diagnosis (McMorrow, et al., 2008).

The rapid diagnostic test kit may have provided such results because the kit used is an antibody based test and thereby can only indicate a positive result when the body’s immune system has produced antibodies of all isotypes (IgG, IgM, fgA) specific to *Plasmodium falciparum*. Thereby, a negative result doesn’t preclude the possibility of malaria *Plasmodium falciparum*.

The prevalence of *Plasmodium falciparum* in children below the age bracket of 12 years old in this study justifies the initial findings of many authorities on the epidemic of malaria infection in sub-sahara Africa which could be attributed to many cultural lifestyle and environmental problems. It is therefore recommended that the general public must be aware of the complications of *Plasmodium falciparum* and be encouraged to maintain clean environment, provide adequate balanced diet that boosts immunity against malaria infection. Also, the use of bed nets should be encouraged to reduce transfer of infection

REFERENCES

www.ijpsi.org
The prevalence of *Plasmodium falciparum* in children below 12...